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ABSTRACT 

Generalized linear models for cross classifications of means and 
proportions are presented with particular reference to data collected 
by fertility surveys. Besides the standard linear normal models 
which form the basis of analysis of variance, log-linear and logit­
linear models are discussed. Topics covered include the objectives 
of model fitting, model selection, the estimation and interpretation 
of parameters and fitted values, standardization and the treatment 
of within-cell sample variances. The methods are applied to data on 
fertility and contraceptive use from the Fiji Fertility Survey, 
using the computer program GLIM. 
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FOREWORD 

The problem discussed in this paper is one of several types occurring in 
the analysis of classified data. For a population cross-classified by 
several criteria e.g., by age, education, social class, and district 
of residence, it is required to examine how some specified variable 
(which may be continuous, discontinuous or itself merely classificatory) 
varies over the different classes and sub-classes. 

In some cases the entries in the sub-cells of the classifications are them­
selves counts of numbers of individuals, that is, the table is a contingency 
table. A comprehensive study of such cases, among others, will be found 
in the book by Bishop, Fienberg and Holland (1975). In this paper con­
tingency tables are studied in a more restricted way; a variable taking 
only two values is formed, for example, the variable Contraceptive Use 
with two values:l = Ever Used, 0 = Never Used; then the proportion of 
respondents taking one of these values is analysed across the cells of the 
table. 

The other situation considered here concerns tables where the cell entries 
are mean values of a quantitative variable such as parity (mean number of 
children ever born to the female respondent). This raises some special 
problems in that, although the number of respondents in each cell is known, 
the distribution of the dependent variable and, in particular.the variance 
within cells is not. Recourse could be had to the primary information to 
resuscitate this information and some suggestions for the treatment of 
within cell variances are given in Appendix I ; however,many demographic 
tables are printed out from the computer in the form which is studied here. 

The fundamental problem, in this as in many multivariate situations is 
that the variables are not independent among themselves and it is there­
fore difficult to assess their relative contribution to the specified 
variable. The general objective of analysis is then to study how the 
specified variable varies between sub-classes in the categorization. If, 
for instance, it were found that the relationship between parity and 
education was the same for each district of residence and age-group the 
model of the behaviour of the system could be simplified in that, for 
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such a relationship, district and age could be ignored. The technical 
way of saying this would be to state that certain interactions were zero, 
or that behaviour could be accounted for by fewer parameters. One of 
the objects of model-fitting, in this kind of study, is to find as 
parsimonious a model as possible; that is to say, one which requires 
the smallest number of parameters to "explain" it - a version of the 
old logical principle known as Ockham's razor. 

It may be useful to explain two expressions which occur thematically 
throughout the whole of multivariate contingency analysis. To fix the 
idea, suppose a specified variable Vis studied under categorization 
by three variables A, B, c. We can then consider how v varies. 

(a) among the sub-cells ABC (i.e., if there are a categories 
in A, bin Band c in C, among the abc sub-cells). 

(b) among the two-way classifications AB, BC, CA or combina­
tions of them, 

(c) among the one-way classification.A, B, and C or combina­
tions of them, or 

(d) that it does not vary but is a constant. 

In short,we can ·consider a model 

V= A+ "A +.IE+ "c +"AB +"Be + "cA +"ABC 

in which any or all of the terms except the constant A vanish. If only 

"A• "B• "c survive we have a model in which the categorizations A,B,c, 

are independently contributing to Vin an additive way. If such a model 
gives an inadequate fit we involve some or all .of the terms typified by 
AAB' These are known as first-order interactions or two-factor effects.* 

If these are inadequate we have to involve "ABC' 
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These models become complicated for more than three classificatory 
variables and it is customary to examine the general model hierarchically. 

That is to say, we find out whether we can discard AABC as non-contributory. 
If so we proceed to examine the two-factor effects; and so on. The point 
of proceeding in this way is that if we retain a particular effect, we 
automatically retain the effects of lower order which it embodies; for 

example, if we retain /..AB we retain AA and AB' and if we retain AAB and 
ABC' we must retain AA' t.B and Ac· The procedure bears an obvious 
resemblance to the step-wise backwards fitting of regression analysis. 

Sir Maurice Kendall 

* The term "interaction" arose in the analysis of variances in an 
agricultural context. If a plant was dressed with a nitrogenous and 
a phosphoric fertiliser and the two did not affect the yield indepen­
dently they were said to "interact" and this may have corresponded to 
a real physical interaction. More generally, the term has come to mean 
the absence of independence of two or more factors. It may be better, 
as Bishop et al recommend, to avoid the term and speak of one-factor, 
two-factor, three-factor effects. A p-factor effect is a (p-1) 
interaction. 
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}, INTRODUCTION 

Data from WFS Surveys are often presented in the form of multi-way 
classifications, where sample quantities such as counts, percentages or 
means are classified according to a set of background characteristics 
such as age, educational level, region. Each characteristic is 
represented by a factor,or vm,iable, which has a set of possible levels, 
and the result is a table of cells with one cell for each combination of 

levels of the factors. 

If the entries in the table are the number of sampled individuals which 
belong to each cell, then the table is called a contingency tabZe. 

For example, Table l is a contingency table with 5 factors defined as 
follows: 

R = Race: 

A= Age (Years): 

E = Education: 

Fijians, 2 = Indians 

<25, 2 = 25-29, 3 = 30-39, 4 = 40-49 

Lower Primary or less, 2 Upper 
Primary or more. 

Ti= Desire for More Children: l = Yes, 2 = No. 

u = Pattern of Contraceptive Use: Ever Used, Not Currently 
Using. 

2 Currently Using. 
3 = Never Used. 

This table is adapted from Table 115 in the Fiji Fertility Survey Country 
Report. The number of levels of the variable "Pattern of Contraceptive 
Use" in that table are reduced from 6 to 3 by dropping the classi­
fication according to future intention, and classifying sterilised 
women as current users. 
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TABLE l Distribution of Currently Married "Fecund"a Women by Race) 
Current Age, Pattern of Contraceptive Use, Desire for More 
Children and Educational Level 

FIJIANS INDIANS 
Ageb Age 

Educ Desi re for Patternc 
More Of 
Children Contraceptive 

Use ( l ) (2) (3) (4) (l) (2) (3) (4) 

( l ) 12 25 59 11 70 59 43 4 

LOW Yes (2) 6 14 33 6 78 59 35 4 

(3) 41 35 53 24 99 45 57 11 

( l) 6 10 55 26 28 37 71 44 

LOW No (2) 4 10 80 48 27 l 06 378 212 

(3) 4 9 22 20 12 17 48 50 

( l ) 62 73 58 4 71 44 16 2 

(2) 52 54 46 8 113 64 21 0 
HIGH Yes 

(3) 150 82 60 4 97 23 17 

( l) 24 54 45 9 20 33 21 6 

HIGH No (2) 10 27 78 31 22 56 l 00 32 

(3) 26 11 23 3 8 12 12 9 

a Sterilized women are included as currently contracepting. 

b Age categories defined as follows: 
l = <25, 2 = 25-29, 3 = 30-39 4 = 40-49. 

c Contraceptive Use categories are labelled as follows: 

( l ) = Ever Used, Not Currently Using (2) = Currently Using, 

(3)= Never Used. 
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TABLE 2a) Proportion Currently Using An Efficient TABLE 2b) Proportion Who Ever Used Efficient Contraceptive 
Contraceptive Method According to Race, Method According to Race, Current Age, Desire 
Current Age, Desire for More Children For More Children and Educati ona 1 Level 
and Educational Level 

FIJIANS INDIANS FIJIANS INDIANS 
Desire Age Age Desire Age Age 

Education For More Education For More 
Children 2 3 4 2 3 4 Children 2 3 4 2 3 4 

LOW YES p .10 .19 .23 .15 .32 .36 .26 .21 LOW YES p .31 .53 .63 .41 .60 . 72 . 58 42 
00 n 59 74 145 41 247 163 135 19 n 59 74 145 41 247 163 135 19 

LOW NO p .29 .34 .51 .51 .40 .66 .76 .69 LOW NO p . 71 .69 .86 .79 .82 .89 .90 .84 

n 14 29 157 94 67 160 497 306 n 14 29 157 94 67 160 497 306 

HIGH YES p .20 .26 .28 .50 .40 .49 .. 39 .00 HIGH YES p .43 .61 .63 .75 .65 .82 .69 .67 

n 264 209 164 16 281 131 54 3 n 264 209 164 16 281 131 54 3 

HIGH NO p .17 .29 .53 .72 .44 .55 .75 .68 HIGH NO p .57 .88 .84 .93 .84 .88 .91 .81 

n 60 92 146 43 50 101 133 47 n 60 92 146 43 50 101 133 47 

p proportion p proportion 

n sample size n sample size 



TABLE 3 Mean Number of Chi 1 dren Ever Born for Women of Indian Race, 
by Marital Duration, Type of Place and Education. 
FITTED VALUESa FROM LOG LINEAR MODEL, OBSERVED VALUESb, 
AND SAMPLE SIZESc. 

TYPE OF PLACE 

SUVA URBAN RURAL 
Years 
Since Education* Education* Education* First 
Marriage 

( 1 ) (2) (3) (4) (l) (2) (3) (4) { 1 ) (2) (3) (4) 

0. 8 9
4 

0. 9 1 0. 8 0 0. 6 5 • 9 9 1. 0 2 0. 9 0 0. 7 3 1. 0 3 1. 0 6 • 9 3 0. 7 6 

<5 
0. 50b 1.14 0.90 0.73 1.17 0.85 1.05 0.69 0.97 0.96 0.97 0.74 

EJ 21 42 51 12 27 39 51 62 102 107 47 
2,41 2. 4 7 2. 1 8 1. 7 7 2,70 2. 7 6 2,44 1. 9 8 2. 8 1 2,87 2. 5 3 2. 0 6 

5 - 9 3. 10 2.67 2.04 1.73 4.54 2.65 2.68 2.29 2.44 2. 71 2.47 2.24 
10 30 24 22 13 37 44 21 70 117 81 21 

3. 5 0 3. 5 8 3. 16 2,57 3. 9 2 4. 0 1 3. 5 4 2. 8 7 4,07 4. 1 7 3. 6 8 2,99 

10-14 4.08 3.67 2. 90 2.00 4.17 3.33 3.62 3.33 4.14 4 .14 3.94 3.33 
12 27 20 12 18 43 29 15 88 132 50 9 

4. 4 7 4,57 4. 0 4 3,28 5. 0 0 5. 12 4. 5 2 3. 6 7 5. 2 0 5. 3 2 4,69 3. 8 1 

15-19 4.21 4.94 3.15 2.75 4.70 5.36 4.60 3.80 5.06 5.59 4.50 2.00 
14 31 13 4 23 42 20 5 114 86 30 1 

5. 3 0 5. 4 3 4. 7 9 3. 8 9 5. 9 3 6. 0 7 5. 3 6 4. 3 5 6, I 7 6. 3 1 5,57 4,53 

20-24 5.62 5.06 3.92 2.60 5.36 5.88 5.00 5.33 6.46 6.34 5.74 2.50 
21 18 12 5 22 25 13 3 117 68 23 2 

6,42 6,57 5. 8 0 4,71 7, I 8 7. 3 5 6. 4 9 5,27 7. 4 7 7,64 6. 7 5 5. 4 8 

25+ 6.60 6. 74 5.38 2.00 6.52 7. 51 7.54 - 7.48 7. 81 5.80 -
47 27 8 1 46 45 13 0 195 59 10 0 

SOURCE: FIJI FERTILITY SURVEY 
*Categories of Education Level are: 

(l) None 
(2) Lower Primary 
(3) Upper Primary 
(4) Secondary or Higher 

Note: Figures in italics are Base Frequencies 

MODEL: mtde Y·Y it'y 2d·Y 3e 

y 5.479 

y o.860 
"(I 2 0.963 [~13 = l] 

II 

y 0.139 y22 0.376 y 2 3 = 0.545 
21 

I\ 

y 1. 363 y 3 2 l. 395 y 33=1.231 3 I 

DEVIANCE: x2 70.65 on 59 degrees of freedom. 
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The counts in a contingency table describe the joint distribution of 
the factors. If interest is focussed on how the distribution of one 
factor varies with respect to the other factors, then the counts are 
often converted into percentage distributions of the factor of interest, 
with counts in the margin. For example in Table 1, we may be interested 
in the effects of R, A, E and won Contraceptive Use. Hence a new 
table is constructed, where the percentage distribution of u is cross­
classified by the other variables. The marginal counts in this table 
form a four-way contingency table describing the joint distribution of 
R, A, E and fol. 

If the dependent variable (here U) is reduced to two levels, then the 
proportion p out of n for which it takes one of its two values can be 
cross-classified, thus effectively reducing the dimensions of the cross­
classification by one, For example, in Table 2a) ~1e classify the 
proportion currently using contraception (U=2), and in Table 2b) we 
classify the proportion who have ever used contraception (U=2 + U=l) 
by R, A, E and i'I. In the analysis of these tables we are usually 
interested in variation in the proportions P across the cells, and the 
distribution of the sample sizes is not studied, although the sample 
sizes do play a role in the analysis since they_ determine the precision 
with which the proportions are estimated. 

So far we have considered tables of counts. Other tables cross­
classify the sample mean y (or some other summary statistic such as 
the median) of the ordinal variable Y for each subsample formed by 
the joint levels of factors. 

As in tables of proportions, two quantities are tabulated, the mean y 

for each cell and the sample size n on which the mean is based, and 
the primary interest is in the variation of the means across the cells, 
which describe the effects of the factors on the response or depende.nt 

variable Y. 
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For example, Table 3 displays a cross-classification of the mean parity 
(that is, the mean number of live births) for women of Indian race from 
the Fiji Fertility Survey. There are 3 factors, 

T =Type of Place of Residence: l=Suva, 2=0ther Urban, 3=Rural 

D Marital Duration(Years): 

E Education: 

l=0-4, 2=5-9, 3=10-14, 4=15-19 
5=20-24, 6=25+ 

l=No Education, 2=Lower Primary, 
3=Upper Primary, 4=Secondary and 

Higher 

The first entry in each cell of the table is described later; the 
second entry is the mean parity and the third entry is the sample size. 

It is worth noting that a cross-tabulation of proportions can be considered 
a special case of cross-tabulation of means in which the response Y is 
dichotomous and takes values l and O; for then the mean in each cell 
is simply the proportion of cases with Y=l. 

We shall describe here the formulation of models for cross-tabulations of 
means or proportions, which describe the effect of a set of factors on the 
mean of a scalar or dichotomous dependent variable. 

Note that we shall not consider models for contingency tables such as the 
log-linear models formulated by Goodman (see, for example, Goodman, 1970, 
1972) and described by Davis (1974) or Bishop, Fienberg and Holland (1975), 
These models are formally a special case of the log-linear models for cross­
classified means discussed here, and they can be calculated using the same 
computer programs, However they describe the joint distribution of a set 
of variables, and hence have a very different interpretation from the 
models given here, which describe the effect of a set of variables on a 
response* 

* Analysis of contingency tables is in some respects analogous to cor­
relation analysis of scalar variables whereas the analysis of tables 
of means is analogous to regression analysis of a scalar response. · 
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Contingency table models have a limited role in the analysis of WFS data, 
since many contingency tables in the tabulations for the First Country 
Report are largely descriptive in character, whilst others are usefully 
analysed by defining one or more dichotomous responses and analysing the 
cross-classification of proportions by the methods given here. This 
restricts the scope of the analysis, but has the advantage of reducing the 
dimensions of the cross-classification by one, a reduction which greatly 
simplifies the treatment of four or five way tables. 

There are two serious limitations of any analysis based solely on a cross­
classification of means. The first involves the within cell variance of Y, 

that is the variability of the response for a group homogeneous with 
respect to the factors. Often the table of means contains no information 
about these variances.* Hence either unverifiable assumptions have to be 
made about them, or additional data are required usually in the form 
of within cell sample variances. Thus it is important to calculate 
these sample variances if at all possible; the additional information 
does not radically affect the analysis of the means described here, but 
provides checks on the variance assumptions, as illustrated in Appendix l. 

A more fundamental limitation concerns the grouping of continuous variables 
such as age and marital duration. The analysis of cross-classified data 
given here does not take into account ordering between the categories of 
such grouped variables, and the choice of categories is rather arbitrary. 
In many ways an analysis of the individual level data without grouping is 
more natural, using regression or analysis of covariance techniques. 
Although this may be more informative, the results tend to be more abstract 
and hard to interpret, and cross-classifications at least present a simple 
picture of multivariate data without the abstract indices such as correla­
tion coefficients required for individual level data. 

The general idea behind fitting models is to clarify this picture by 
distinguishing significant features from insignificant detail. Before 
launching into a full description of the models we shall illustrate this 
by describing a simple model for the data in Table 3. 

* Exceptions to this rule are tables of pro~ortions, where the variance 
of y is given by the Binomial formula p (1-p). 



2, AN EXAMPLE OF A MODEL 

There are several paths which might lead to an examination of the data in 
Table 3. For example, suppose that we are studying the effect of 
education on fertility. The mean parity for different levels of educa­
tion seem to indicate that education is strongly related to fertility: 

INDIANS 

Mean Parity 
(Sample Size) 

None(l} 
5.2 

(895) 

EDUCATION 
L.Prim(2) U.Prim(3) 

4.2 2.8 
(943) (579) 

Sec+Higher(4} 
l. 5 

( 271) 

Mean 
4.0 

(2688} 

Hm~ever, part of these differences is attributable to a compositional 
effect of marital duration. That is, highly educated women tend to 
be younger and marry later than less educated women, and hence have 
shorter exposure to the risk of conception. This compositional effect 
can be studied by a two-~1ay cross classification of mean parity by 
education and marital duration. The table (not shown here) indicates 
that education is still negatively associated with fertility after 
marital duration is controlled, although the magnitude of the effect 
is much reduced. Looking further, we may hypothesize that this relation­
ship is merely reflecting urban-rural differentials in fertility. That 
is, within the urban sector and the rural sector differentials according 
to educational. level do not exist, and the differentials are caused by 
the concentration of more highly educated women in the urban sector. 
To investigate this the three-way table, Table 3, is constructed.* 

An obvious difficulty in such multiway classification is that the within 
cell sample sizes are small, In Table 3 twelve of the 72 sample means 

are based on samples of less than ten and two cells are empty. As a result 
it is difficult to distinguish real differences from differences caused 
by random fluctuation. 

x We do not intend to discuss the merits of marital duration as a 
demographic control here. For some comments see Pullum (1977). 
The methods presented here are equally applicable to tables which 
control age, or age and age at marriage. 
It is worth noting that this table is not recommended for the First 
Country Report, where ten-year rather than five-year marital dura­
tion cohorts are used to reduce the number of cells. Ho~1ever, in 
this case the strong relationship between education and marital 
duration and between marital duration and parity render this table 
unsatisfactory, because the effect of marital duration is not 
properly controlled. Hence we are led to consider the more 
detailed table. 
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Using statistical terminology, the problem is that a large number of 
pal'Cxmeters, the 72 population cell means, are being estimated from the 
sample. Suppose that we try to estimate the cell means from,,,_a smaller 
set of parameters. Specifically we calculate a grand mean (y)~ th~ee 

A 

Type of Place estimates, one for each level of Type of Place (y ,y ,y ), 
A A A 11 }2 }3 

six Marriage Duration estimates (Y ,y , ... ,y ) and four Education 
A A A A 21 22 26 

estimates (Y ,y ,y ,y ) and then calculate a fitted value for each 
31 32 33 34 

cell mean of the form 
Fitted value = (Grand mean) x (Type of Place estimate) x (Marriage 

Duration estimate) x (Education estimate) 

In this way estimates of the 72 cell means are produced from l + 3 + 6 + 

4 = 14 parameters. Let us denote the cell with Type of Place = t, 
Marriage Duration = d and Educ~tion = e by the subscripts tde; let ytde 

be the sample mean parity and mtde the fitted value for this cell. Then 
the fitted values are given by the formula 

y .y . y . y , for all t, d and e 
lt 2d 3e 

(2 .1) 

Loosely speaking, the estimates are chosen so that the fitted values mtde 

resemble as closely as possible the sample means, yd . The exact criterion t e 
of fitting and the method of calculation are considered later. The estimates 
giving the best fit for the data in Table 3 are as follows: 

Grand mean: y 5.479 
A 

Type of Place: X11 = 0.860, y 0.963, y 
Al2 "13 

Marriage Duration: y = 0 .139, y = 0.376, y 0.545, y 2r, 
0.696, 

,,,_21 ~22 23 
y = 0.826, y = l 
,,,_25 ,,,.26 

Education: y 31 
= 1.363, y = l .395, y 1. 231, y 

32 33 34 

The fitted values constructed from these estimates are the first entries 
of each cell in Table 3. For example, consider the cell with t=2, d=3 and 
e=l, which corresponds 
and no education. The 

m 
231 

y 
23 

to urban women with 10-14 years of marriage duration 
fitted value, m = 3.92, is obtained by calculating 

231 
y = (5.479) (0.963) (0.545) (l.363) = 3.92. 

31 
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The equation (2.1) describes a muUipUcatioe model for the fitted 
values, multiplicative since the estimates on the right hand side are 
multiplied together. Of course there are many other ways of estimating 
the cell means from a smaller set of underlying parameters; for example, 
one might use the linear model 

mtde = A + A + A + A 
1 t 2d 3e 

(2.2) 
A A 

The A'S have a similar role to the y's in (2.1). This model has the same 
number of ~·s as the ;•sin (2.1), but the values of the ~·sand the 
fitted values obtained from them are quite different. 

There are two criteria for deciding between models for constructing 
fitted values. The population cell means should follow approximately the 
same pattern, and the fitted values should be close to the observed 
sample means. In this example, let mtde be the population cell mean for 
the cell with T = t, D d and E = e. If these means can be expressed in the 
multiplicative form 

mtde = y \t y
2
d y

3
e for all t, d, and e, (2.3) 

then the fitting equation (2.l) is appropriate; if the population means can 
be expressed in the linear form, then (2.2) is appropriate. Of course in 
practice we do not know the population means and do not expect them to 
follow patterns such as (2.3) exactly; (2.3)· is a working hypothesis, 
which is tested by comparing the fitted values with the sample means. 
However we shall indicate later that the multiplicative model is theoretical­
ly preferable to the linear model for these variables. Also on a more 
practical level we shall show that the multip1icative model provides a 
better fit to the data. 

Inspection of Table 3 suggests that the fitted values from the multiplicative 
model succeed very well in reproducing the sample means, that is, the model 
is indeed a good fit. Note that the correspondence between the fitted values 
and the observed means is particularly good for cells with a large sample size, 
where the sample means have a small variance. For example, the cell with 
t=3, d=4, e=l, with 114 observations, has observed mean 5.06 and fitted 

value 5.20. For cells with small sample sizes the fitted value can deviate 
more from the observed value. This is clearly a sensible property for 
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a good model. Indeed a chi-squared test* gives a value of 70.65 on 59 
degrees of freedom, indicating that the model fits the data. 

The degrees of freedom mentioned here represent the number of parameters 
saved by fitting the model rather than estimating each cell mean individually**. 
This reduction in the number of quantities estimated by the data reduces 
the sampling variation of estimates, and so the fitted values are more 
stable than the observed means. Also fitted values are provided for the 
empty cells. These properties imply that the fitted values are useful 
input for estimating the means of one factor over a standard distribution 
of the other factors, using the technique of standardization. This idea 
is taken up in Section 5. 

Although the fitted values are useful, perhaps a more compelling reason 
for fitting a model is that the structure of the model clarifies important 
relationships between the variables of the cross-classification. All 
the models considered in this paper have such an associated substantive 
interpretation. 
Consider the present model, (2.1}: 

A A A 

mtd = y y y y for all t, d and e. 
e it zd 3e 

This has the following property: the ratio of the estimated parities for 
two levels of one factor, with the levels of the other two factors fixed, 
is the same for all levels of the other two factors. For example, if e 

and e' are two educational levels, then from (2.1) 
A A A A A A A A 

mtd /mtd' = (y. Y ·Yd ·Y }/ (y.y ·Y ·Y ' ) = Y I Y3e' e e it z 3e it zd 3e 3e 

and this ratio does not depend on t and d. Thus percentage differences in 
mean parity between education groups, with Marita 1 Dura ti on and Type of 
Place controlled, are the same for all levels of Marital Duration and 
Type of Place. Percentage differences between levels of T and D have 
a similar interpretation. 

* This test is like the more familiar chi-square test for independence in a 
two-way table. It is discussed in Section 4. 

** The degrees of freedom are ca 1 cul ated as 59 = 10· - 11, where 70 represents 
the number of non-empty cells and 11 represents the number of distinct 
parameters in the model. The latter is three less than the original number 
because only 11 parameters are required to completely determine the 
fitted values in (2.1). This point is discussed further in Chapter 4. 
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In general, if differentials in response according to a factor A (measured 
on some scale) are the same for all levels of another factor B, then the 
effects of A and B are said to be additive. If A and B are not additive 
then they are said to interact in their effects on the response. Thus 
the model (2.1) has the interpretation that the effects of T, D and E 

are additive when differences are measured on a percentage scale. 

We can proceed to describe the ratios individually. Consider for 
e:ampl: the effects of education, represented by the set of ratios 
{y /y , } for different values of e and e'. Since y is set equal 

3e 3e 34 
to one, we have 

~ ~ 

Y = Y /y = m /mtd4 
31 31 34 tdl 

~ 

that is,y = 1.36 estimates the ratio of mean parities between E=l and 
31 ~ 

E=4, and similarly y = 1.40 estimates the ratio of mean parities between 
32 

E=2 and E=4 and y = 1.23 estimates ratio of mean parities between E=3 
33 

and E=4. Hence we can say that after controlling for Type of Place and 
Marital Duration, women with no education (E=l) have an estimated 36 per cent 
more children than women with secondary or higher education (E=4) and 
women with upper primary education (E=3) have an estimated 23 per cent more 
children than women with secondary or higher education. 
can be made by taking the ratio of the appropriate y's. 
compare E=l and E=2, 
A A A A 

Other comparisons 
For example to 

y /y = mtd lmtd = 1.363/1.395 = 0.98, so that women with no education 
31 32 1 2 

have an estimated 2 per cent fewer children than women with lower primary 
education with the same Type of Place and Marital Duration. 

This last difference is small; indeed in Section 5 we shall indicate 
that it is not statistically significant. However, the percentage 
differences between other levels of Education are large and significant. 
Hence the answer to the question which led us to consider Table 3 is 
that the relationship between Education and mean parity is not merely 
reflecting the joint compositional effects of Type of Place and 
Marital Duration. 
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In future sections we sha·11 discuss the selection of this particular 
model and extend further its interpretation. However, the next step 
is to describe the family of models considered in this paper. The 
family is general enough to cover most of the tables obtained from 
WFS Surveys; the substantive meaning of the models may be clarified by 
reference to the particular examples given here and in later sections. 
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3. GENERALIZED LINEAR MODELS 

In the previous section we discussed a particular procedure for replacing 
sample means in a cross-tabulation by fitted values calculated from a 
small set of underlying quantities. Any cross-tabulation of means is a 
potential candidate for this procedure, but the extent to which the 
analysis is useful depends upon the underlying structure of the population 
means and the sampling properties of the data. The statistical models 
presented in this chapter make explicit assumptions about these aspects 
of the data. Specifically they consist of two components, an assumption 
about the structure of the population cell means, represented by a formula 
such as (2.3), and an assumption about the distribution of the sample cell 
means about the population cell means. These two parts of the model are 
called the systematic component and the error structure respectively, and they 
are conceptually quite distinct. 

The purpose of a statistical model is to define precisely conditions under 
which the associated analysis is the best possible. Prior knowledge of the 
data can be compared with the assumptions of the model to decide whether 
the analysis is worthwhile. Note that for the type of data collected in 
WFS surveys, where the theoretical structure between the variables is not 
subject to exact physical laws, the model is always a simplification of 
the real world and can only be said to be followed approximately. However 
some models are better than others, and a good model leads to good data 
analysis. 

We describe a large class of models for cross-tabulated means and propor­
tions, taken from the system 'developed by J.A. Nelder and others at 
Rothampstead Experimental Station. The statistical methodology is 
discussed in Nelder and Wedderburn (1972)*, and a computer package 
called GLIM (§_eneralized .!:_inear _!_nteractive _!:!odelling) has been developed 
to fit the models**. Our purpose here is to describe the basic elements 
with a minimum of technical detail. 

* Another usefUl reference here is Nelder ( 1974 ). 

** For a discussion of available programs for computing models, the 
reader is referred to Appendix 2. GLI!l is obtainable from the Numerical 
Algorithms Group, 13 Banbury Road, Oxford OX2 6NN, U.K. 
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3.1 LINEAR MODELS 

Until recently nearly all model-based statistical analysis was based 
on the class of linear models with Normal (Gaussian) error. This is 
defined as follows. Suppose that y is the sample mean of Yin a typical 

a 
cell of the table, which we denote by the subscript a. Let the mean value 
of Y for the population in cell a be m

0
; in other words, m

0 
is the expected 

value of y . (It is important for later developments to keep clear of the a 
distinction between y , which is observed, and m which is not observed). . a · a 
The model consists of two parts: 

(i) a systematic component, which expresses the value of m for each 
a 

cell as a sum of unknown parameters. 
(ii) an error structure, whi.ch characterizes the distribution of y 

c 
about its expected value m . The Normal error structure states a 
that y is normal with mean m and variance cr 2k /n , where 

a a a a 

cr 2 is an unknown positive constant, 
k is a known multiplier, which may take different values 

a for different cells, and 
n

0 
is the sample size for cell a. 

3.1.1 The Systematic Component 

Consider the data in Table 3. Here Ytde is the mean parity for the 
cell with T=t, D=d and E=e, and mtde = E(Ytd~). Examples of systematic 
components are 

mtde = A for all t,d and e; (3.1) 

mtde 1-+t- +>-/ A 
it 2 3e 

for all t, d and e; (3.2) 

mtde A + A + A + >- d for all .t, d and e; (3.3) 
it 2d izt 

mtde >-+>-+I-+ A + A 
it 2d 3e 

+ A 
iztd i3te 

+ A 
23de 

for all t, d and e. (3.4) 
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The terms on the right hand side are called parameters, or effects, since 
they characterize the way in which the mean parity of the population varies 
for different levels of the factors T, D and E. Thus model (3.1) implies 
that mtde is constant for all cells, that is, the mean parity is the same 
for all values of T, D and E. This model is unrealistic since marital 
duration clearly has an effect on parity. The second model (3.2) states 
that T, D and E all affect the mean parity, and that these effects are 
additive on a linear scale, that is, differences in mean parity according 
to one factor are the same for all joint levels of the other two factors. 
Consider, for example, differences according to education; if e and e' 

are two levels of education, and T=t and D=d are fixed levels of the 
other factors, then mtde - mtde' represents the difference in mean parity 
between education groups e and e'. From (3.2), we have 

mtd - mtd ' = ( A + A + A + A ) - ( A + A + A + A , )= A - A 
e e it 2d 3e it 2d 3e 3e 3e 

and so this difference is the same for all values oft and d. 

This linear additive model forms the basis of a multiple classification 
analysis of the table. However, the interpretation indicates that it is 
not appropriate, since we should not expect differences in mean parity 
according to T or E to be constant for all levels of v: since parity 
is a cumulative response we expect these differences to increase with D. 

We shall see later that the data do not fit this linear additive model, 
confirming our suspicions. Also the linear additive model should be 
contrasted with the multiplicative model given in Table 3 and discussed 
in the previous section, where differentials are measured by ratios or 
percentage differences. The multiplicative model contains the same number 
of parameters, but appears more realistic since the assumption of 
additivity when differentials are measured as ratios or percentage differences 
seems more reasonable. We shall return to this model later. 
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The model (3.3) omits all effects involving the education subscript e, 

and hence if e and e' are two levels of education, then mtde = mtde: 

for all t and d. That is, Education has no effect on mean parity, after 
controlling for Marital Duration and Type of Place. The inclusion of 
effects { A d} involving the subscripts t and d imply that T and D 

izt 
interact in their effect on P, that is, differentials according to T 

change for different values of D. In symbols, 

mtde - mt'de (A + A + A + A ) - (A + A + A + A ) 
it 2d iztd it' 2d izt'd 

A - A + A - A 
it it' iztd izt'd I 

and this differential depends on the value of d. Finally (3.4) includes 
the effects of T, D and E and all the interactions between pairs of 
variables. 

We shall discuss the choice of systematic component more comprehensively 
in the next section. However, these examples show how each systematic 
component involves a hypothesis about how the mean response for the 
population varies from cell to cell. The error structure, on the other 
hand, pro vi des the link beb1een this theoretical property and the data 
by specifying the distribution of the sample means { y } about their 

c 
expected values { m }. We now consider the normal error structure 

c 
in more detail. 

3.1.2 The Normal Error Structure 

The variance of the mean for cell c, vary = o2 k In , contains a 
c c c 

multiplier kc which needs to be chosen by the analyst. To motivate this 
choice, suppose that Y is a typical individual parity in cell c. Then 

c 
if y is considered the mean of a random sample of n values of Y , we know c c c 
from elementary statistics that var (y ) = var (Y )In . Hence the c c c 
variance of the mean given above corresponds to a within-cell variance 

var Y = k a2. 
c c 

( 3.5) 

The standard assumption is that this within-cell variance is equal for all 
cells (homoscedasticity), and from (3.5) this corresponds to setting 
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k = 1 for all cells c. However, in Table 3, this assumption is untenable, c 
since without reference to data it is clear that the variance of Y (parity) 
increases with marital duration. If within-cell sample variances s 2 are 

c 
available, then these can be used to derive estimates of k and o2 , as in 

c 
Appendix 1; if not, then a reasonable choice seems to be set ktde = d, 

which corresponds to assuming that the variance of Y is proportional to D. 

This choice of multipliers is used in the linear models.fitted in 
the next section. 

In general, the choice of multipliers is not as critical as the choice 
of model, but it is sensible to make some allowance for obvious 
departures from the assumption of equal within cell variances. 

Linear models with Normal error form the basis of the analysis of 
variance of cross-classified data. However,a unique decomposition of 
the variance is only possible for balanced tables, that is tables 
with an equal sample size in each cell. In observational data from 
surveys this is rarely the case. 
rather on fitting and comparing a 
model with the best fit. 

The emphasis for unbalanced data is 
set of models and interpreting the 

The fitting process involves estimating the parameters of the model so 
that the fitted values { m } found by substituting the parameter 

c 
estimates into the systematic component are in some sense as close as 
possible to the means { y } (See section 4). For linear models, these 

c 
fitted values can be negative, and this is undesirable for data 
where the response is inherently non-negative, such as Parity. Similarly, 
if linear models are fitted to tables of proportions then the fitted 

A 

proportions p can lie outside the range zero to one. These deficiencies 
lead to the search for suitable generalizations of linear models which 
give fitted values in the desired range, 

3.2 GENERALIZED LINEAR MODELS 

The models considered here are more general than the usual linear models in 
two respects: i) in forming the systematic component,we express a function 
of the population mean me' called the link function, as a sum of unknown 
parameters; ii) in choosing the error structure we consider other 
distributions apart from the Normal which are more appropriate for mean 
counts and proportions. We consider each of these elements in turn. 
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3.2.1 The Systematic' Component 

The systematic component of a generalized linear model is formed by 
choosing a link function g and setting g(m ), the function of the 

c 
population mean is all c, equal to a sum of parameters~ 

Three choices of link function are used here: 

( i ) The identity function, g(m) = m, which leads to linear models, 
c c 

as before. 
(ii ) The logarithmic function, g(m ) = log m , m > 0 which leads to c c c 

log-linear models. 
(iii ) The logit (or log-odds) function 

g(mc) = logit m = log {m /(1 - m )}, 0 < m < 1, c c c c 
which leads to logit-linear models. 

Example: 

Consider for example a log-linear additive model for Table 3 with 
systematic component 

log mtd = A+ A + Ad+ A for all t, d and e. 
e it 2 3e 

The base of the logarithm is arbitrary: we shall take (natural) 
logarithms to base e. If we define a new set of parameters y = e\ 

A2d A3e Y
2
d = , y

3
e = e · then using the properties of logarithms, 

log mtde logy+ log yit + log y
2
d + log y

3
e 

1 og ( y . y . y d • y ) . 
it 2 3e 

Exponentiating, we obtain 

mtde = y · yit ' Y2d · Y3e ' 

which is precisely the multiplicative model {2.3) in chapter 2. Hence 
that model is an example of a log-linea~ additive model. Note that for 
any log-linear model the fitted values mtde are exponents of linear 
sums, and hence are always positive. 

* It is important to note that this function is defined on the population 
means m and not the sample means y • Hence it is not merely a 

c - c 
preliminary transformation of the data. 
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Just as fitted values of log-linear models are always positive, it is 
easy to see that fitted values of logit-linear models always lie 
between zero and one. For if pc is the fitted value for cell c, then 

A A A 

log {p /(1-p )}= s, 
c c 

A A 

wheres is a sum of estimated effects. Hence p (1-p ) =es, and so 
A A A c c 
pc= es/(l +es), which always lies between zero and one. 

This property suggests that logit-linear models are particularly 
appropriate for cross-classifications of proportions, that is tables 
where the response Y, is dichotomous. Then pc is the expected 
proportion with Y = 1, p /(1-p ) is (in betting language) the odds c c 
in favour of Y=l, and so log {p /(1-p )} is the log-odds in favour c c 
of Y=l. In section 6 we shall fit logit-linear models to the tables 
of proportions given in Table 2*. 

3.2.2 Error Structures Other than Normal 

Finally, we consider the error structure for these models. For various 
reasons, the normal error structure is not the most satisfactory for 
log-linear and logit-linear models. Two additional error distributions 
will be considered here: 

( i ) 

(ii ) 

Poisson Error: Assume that n y , the total for cell c, has a 
c c 

Poisson distribution with mean nm 
c c 

Binomial Error (for tables of proportions): Assume that n y , the 
c c 

number of respondents with Y=l in cell c, is Binomial with index n 
c 

and mean naPc· 

The Poisson distribution is particularly appropriate for response which 
are accumulated counts (such as parity). The distribution is usually 
associated with log-linear models. Since the variance of a Poisson 
distribution equals the mean, we have: 

var (n y ) = n 2 var(y ) = ncmc' c c c c 

* Logit-linear models for proportions are related to log-linear models 
for contingency tables. As noted in the introduction, a table of 
proportions can be expressed as a contingency table. Logit-linear 
models are equivalent to certain log-linear models for this table. See 
Goodman ( 1970). 
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So that the variance of y is proportional to the mean and inversely 
c 

proportional to the sample size, that is, 

vary = m /n . 
c c c 

The Binomial distribution is usually appropriate for dichotomous responses, 
and is associated with the logit-linear model. The variance of the sample 
proportion is p (1-p )In . 

c c c 

3.3 SUMMARY 

A generalized linear model* is characterized by three components 

(a) The link function, g(m) (identity, log or logit) 

(b) The systematic component (the sum of parameters included 
in the model) 

(c) The error structure (Normal, Poisson or Binomial) 

The most common combinations of (a) and (c) are linear Normal, log-linear 
Poisson and logit-linear Binomial. Thus in what follows we shall identify 
models by the link function and assume the corresponding error structure, 
unless the error structure differs from the above. 

Logit-linear models are appropriate for cross-classified proportions. 

Log-linear models are often appropriate when the response is non­
negative, and differentials are to be interpreted on a ratio or 
percentage scale. 

The strategy of analysis is to choose the link function and error 
structure and then to fit a set of systematic components and choose the 
model with the best fit. The choice of systematic component, the 
fitting procedure and an index of goodness-of-fit are discussed in the 
next section. 

* P.s discussed here. The system developed by Nelder includes other 
link functions and error structures. 
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4, HIERARCHICAL MODELS: FITTING AND SELECTION 

In the previous section, 11e gave some examples of systematic components 
for a three-way table (equations (3.1)-(3.4)). In this section, we 
describe sets of systematic components for two-v1ay and three-way tables; 
and criteria for choosing between them; the extension to higher way tables 
involves no new ideas. 

4.1 THE SATURATED MODEL 

First consider a two-way table with factors T and D, such that Ytd 

is the sample mean for the cell with T = t, D = d, and E(ytd) = mtd is 
the populatfon mean. As an example we shall consider the table derived 
from Table 3 by summing over the levels of education, so that Y = P = Parity, 
T =Type of Place and D =Marital Duration. Consider the model with 
systematic component 

(4.1) 

where g is the link function, t. is the grand mean, {;.. : t = 1 to 3} and 
It 

{f.2d.: d = 1 to 6} are called the one-factor effects, or the main effects, 

of T and D respectively on p, and {t.
12

td' t = 1 to 3, d = 1 to 6} are 
called the two-factor effects, or the interactions of T and Don P. 

Not that (4.1) is a set of 3 x 6 = 18 equations, relating means { mtd to 
1 + 3 + 6 + 3 x 6 = 28 parameters {;.., t. , t. , t. }. Hence certain 

lt 2d 12td 
restrictions are required to define the parameters uniquely; these are 
discussed below. The restrictions reduce the number of distinct parameters 
to 18. This model is ca 11 ed saturated, because it does not reduce the 
number of quantities to be estimated, and is really no more than a 
re-expression of the population means*. 

4.2 UNSATURATED HIERARCHICAL MODELS 

Unsaturated models are formed from (4.1) by setting parameters on the 
right hand side equal to zero: we say that these parameters are excluded 
from the model. Two rules are observed in this process. 

* One could set t. = t. = t.2 = 0 and "iztd = g (mtd); then the model 
is clearly vacuous. 1tHowe~r, other constraints are more illuminating. 
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(1) The main or higher order effects of a factor, or set of factors, 
are either all set to zero or all not set to zero. For example, 
the parameters {A , A , A } are the main effects of T. In 

11 12 13 
any model either A , A and A are all assumed non-zero 

11 12 13 
{included in the model), or all assumed equal to zero (excluded 
from the model ) . 

(2) If the k-factor effects between k factors Ax Bx •.• x Kare 
included in the model, then all 1, 2, ... , (k-1)-factor effects 
between subsets of the factors {A, B, ... ,K} must also be included 
in the model. For example, 

g(mtd) = m + m + m It I2td 
is not allowed because the two-factor effects of T x D are included 
in the model but the main effects of Dare not included in the 
model. 

Models subject to these restrictions are called hierarchical*. There 
are five hierarchical models for the two-way table, including the 
saturated model (4.1), 

(TD) g(mtd) = A + >. + A + A ; for all t, d; 
It 2d 12td 

(T,D) g(mtd) A + A + A for all t, d; 
It 2d 

(T) g(mtd) A + A for all t. a; 
It 

(D) g(mtd) >. + A2d for all t. d; 

(0) g(mtd) A for all t. a; 

(4.1) 
(4.2) 
(4.3) 
(4.4) 
(4.5) 

The models (4.1)-(4.5) are labelled on the left to indicate which effects 
are included in the model. Thus (4.5) is called the null model since no 
effects of Tor Dare included. This model is labelled (0). Model (4.2) 
is called the additive model for T and D, and labelled (T,D). The models 
(4.3) and (4.4) imply that one of the factors has no effect on the response, 
and are labelled (T) or (D) accordingly. Finally, the saturated model is 
labelled ('l'D), since it includes the two-factor effect of T and D. The 
main effects of T and D are included because the model is hierarchical**. 

* Non-hierarchical models are sometimes useful in particular situations, 
but are not considered here. 

**The notation is similar to that used by Goodman (1970) to describe 
models for contingency tables. 
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For a three-way table with three factors, T, D and E, say, the saturated 
mode 1 becomes 

(TDE):g(mtde)=t.+t. +t. +;. +;. +t. +;. +t. , (4.6) 
it 2d 3e i2td I 3te 23de 123tde 

where, in addition to one-factor and two-factor effects, we have three-
factor effects of T, D and E {A : t = 1 to 3, d = 1 to 6, e = 1 to 4}. 

. . i23tde . 
By setting parameters in (4.6) equal to zero, we obtain 18 unsaturated 
hierarchical models for the three-way table. These are listed in the first 
column of Table 4. The notation is the obvious extension of that for 
two-way tables. For example, the linear models (3.1), (3.2), (3.3) and 
(3.4) of Section 3 are labelled (TDE), (T,D,E), (TD) and (TD, TE, DE) 

respectively; the model (TD, TE, DE) includes all one-factor and two-factor 
effects but excludes the three factor effects of T, D and E, 

4.3 MODEL FITTING 

4.3.1 Linear Models 

Fitting a model involves estimating the effects included in the systematic 
component. The estimation procedure depends on the link function and 
the error structure. For linear models with normal error, the parameters 
are estimated so that if me is the resulting fitted value for cell e, 

then the criterion 

s = E n (m - y )2/k , e e e e 
e 

is minimized, where the summation is over the cells of the table, ye 

and n are the sample mean and sample size respectively for cell e, and 
e 

k is the multiplier in the error variance. This estimation procedure 
e 

is called weighted least squares, since Sis a weighted sum of the squares 
of the deviations of the observed sample means from the fitted values, 
with weights n /k . Note that empty cells (n = 0) are given weight zero, 

c c c 
so any value of y can be substituted in such cells without affecting the 

e 
estimates of the parameters. The minimum value of sis called the 
residual sum of squares or the deviance, and measures the fit of the model. 
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TABLE 4 Hierarchical Linear and Log-Linear Models Fitted to Data in Table 3 

LINEAR MODELS{l) LOG~LINEAR MODELS( 2) 
Model ( 3) df deviance mean deviance deviance mean deviance 

lil 69 4906 71. 1 3,732 54.1 
T 67 4835 72.2 3,659 54,6 
D 64 189 .1 2.95 165.8 2,59 
E 66 3839 58.2 2661 40,3 
T,D 62 162.8 2.63 120. 7 1. 95 
T,E 64 3821 59.7 2647 41 .4 
D,E 61 150.2 2.46 100,0 1 ,64 
T,D,E 59 135.8 2.30 70.65 1. 20 
TD 52 121. 3 2.33 108.8 2.09 
TE 58 3812 65.7 2,626 45.3 
DE 46 98.95 2.15 84.46 1.84 
TD,E 49 89.38 1.82 57.06 1.16 
TE,D 53 131.1 2.47 59,89 1.13 
DE,T 44 84.49 1. 92 54.91 1.25 
TD,TE 43 78.93 1. 84 44.27 1.03 
TD,DE 34 49.02 1.44 42. 72 1.26 
TE,DE 38 78.30 2.06 44.60 1.17 
TD,TE,DE 28 39.68 1.42 30.95 1.11 
TDE 0 o.o 0.0 

(1) Linear Models with Normal Error, ktde = d for all t, d, e. 

(2) Log-Linear Models with Poisson Error. 
(3) For notation, see text. 
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For example, to fit the linear additive model (T,D,E) to the three­
way table of mean parities, we choose parameter estimates 

{A, \t• \a• \e 1 2 t 2 3, 1 2 d 2 6, 1 2 e 2 4} 

so that ceTls ntde (mtde - Ytde) 2/ktde is minimized, where 
A A A 

mtde = A+ A
1
t + A

2
d + A

3
e for all t, d and e. 

As presently defined, this fitting procedure does not uniquely determine 
the parameter estimates, because different sets of parameters can lead 
to the same fitted values and hence to the same value of s. For example 
in (T, D, E) we can replace 

Al Al Al Al 
A= A + c, A =A , A = A + c, A =A - 2c 

it it 2d 2d 3e 3e 
A A Al Al Al Al 

for any constant c, and then mtd = A + A + \a+ A 
e 1 t 3e 

A + A + A + A 
1 t 2d 3e 

Hence we impose restrictions, or constraints, on the parameters so that 
each set of fitted values corresponds to a unique set of parameters. One 
set of restrictions is to set to zero all parameters where one or more of 
the subscripts t, d ore takes on its maximum value (3, 6 or 4 respectively). 
Thus for (T, D, E) we set A = A 

13 26 
A 0, and for (TD) we set 

34 

A = A A = A 
13 26 123d i2t6 

0 for a 11 d and t, 

a total of 10 restrictions. The choice of restrictions affects the 
interpretation of individual effects (discussed in section 5), but it 
does not affect the fitted values or the deviance*. 

* Restrictions are also required for analysis of variance models for balanced 
classifications. There it is customary to require that the sum of the 
parameters over one, or more, of the subscripts is zero. However, there 
is no agreed way of defining the constraints for classifications with 
unequal cell sizes, as here. 
Similar restrictions are required for log-linear and logit-linear models; 
for example, for the log-linear model (T,D,E) we may impose A =A =A =O. 

13 26 34 
This is equivalent to the constraints y =y =Y =1 used in defining the 

13 26 34 
estimates in Table 3, since Ajk= log Yjk and log 1 = 0. 

31 



4.3.2 Log-linear and Logit-linear Models 

For log-linear and logit-linear models, the fitting procedure is analogous 
to weighted least squares, but it involves minimizing other functions of 
the observed and fitted means. The minimization usually involves an 
iterative computation, and the resulting minimum value is again called 
the deviance and measures of the fit of the model. For further details 
the reader is referred to Nelder and Wedderburn (1972). 

Example 

All the hierarchical linear and log-linear models for the three-way 
cross-classification of mean parities (Table 3) were fitted using the 
computer program GLIM. The deviances are given in columns 3 and 5 
of Table 4. 

4.4 MODEL SELECTION USING THE MEAN DEVIANCE 

It is not possible to compare quantitively the fit of a log-linear model 
with that of a linear model, but different hierarchical models with the 
same link function can be compared via the deviances. 

However, the deviances cannot be compared directly, since the saturated 
model always has the smallest deviance, viz., zero, and as successive 
parameters in the model are set to zero the deviance increases. Hence, 
if models are chosen according to the smallest deviance then the saturated 
model always wins. The point is that the introduction of parameters into 
a model always improves the fit, but since we also prefer models with few 
parameters, the assessment should take into account the number of parameters 
in the model. Accordingly the degrees of freedom (df) are calculated as 

df =number of non-empty cells - number of parameters+ 
number of constraints, 

and the mean deviance (the residual mean square for linear models) is 
calculated as the deviance divided by the degrees of freedom. 
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For example, in Table 3 there are 3 x 6 x 4 = 72 cells and two of these 
are empty, leaving 70 non-empty cells. For (T,D,E) there are 14 paremeters 
and 3 constraints, giving df = 70 - 14 + 3 = 59. For (TD) there are 
1 + 3 + 6 + 3 x 6 = 28 parameters and 10 constraints, giving 
df = 70 - 28 + 10 = 52. The degrees of freedom for the models in 
Table 4 appear in the second column of that table, and the mean deviances 
for linear and log-linear models appear in columns 4 and 6, respectively. 

The model with the best fit, as measured by the lowest mean deviance, 
is (TD, TE, DE) for both the linear and log-linear cases. However, in 
general, we prefer simpler models if the increase in mean deviance is 
slight. Thus the "best" linear model appears to be (TD, DE) and the 
"best" log-linear model appears to be (T, D, E). Note that models which 
do not include the effect of marital duration all have a high mean deviance, 
reflecting the fact that the exclusion of factors which are clearly related 
to the response leads to models with a poor fit. Also the saturated model 
(TDE) has no mean deviance, since the deviance and degrees of freedom 
are both zero. The largest model with a mean deviance is (TD, DE, TE}, 

which assumes that the three factor effects are zero. 

4.4.1 NestedModels 

For a more formal comparison of mean deviances we need the following 
definition. Two hierarchical models (m} and (m'} are nested if (m') 
is obtained from (m) by setting some non-zero effects in (m} equal to 
zero. For example, (TD, TE) and (TD, E) are nested since (TD, E) is 
obtained from (TD, TE) by setting the terms A equal to zero. On the 

13te 
other hand (TD, TE) and (T, DE) are not nested, although the latter model 
has fewer parameters. 

4.4.2 F-Tests of Relative Fit 

A formal statistical test can be used to compare the relative fit of two 
nested mode 1 s, (m) and {m'). Suppose (m' ) is obtained from (m) by setting 
parameters (A , •••. ,A ) equal to zero. Let de , df and de , , df , be 

1 r m m m m 
the deviances and degrees of freedom of {m) and (m' }, respectively. It is 
always true that de < de , and df < df , . If (m} is in fact a true model m m m m 
then {m') is also true if A = ... = A =0. This hypothesis is tested by 

1 r 
comparing the statistic 
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(de 1 - de )/(df , - df ) m m m m 
F = 

de /df m m 

with an F distribution with (df , - df ) degrees of freedom in the m m 
numerator and dfm degrees of freedom in the denominator. Significantly 

large values of F in a one-tailed F-test suggest that (m) fits better 

than (m' )*. 

For example in Table 4 the model (T, D, E) is obtained from (TD, DE) 

by setting t~10-factor effects L\ , 1' } equal to zero. To test if 
12td 23de 

(TD, DE) fits better than (T, D, E) we obtain the following F statistics: 

(a) linear models: F 
59-34, 34 

(b) log-linear models: F 
25, 34 

(135.8-49.0)/(59-34) 

49.0/34 
(70.65-42.72)/25 

42. 72/34 

= 2.39 

0.89 

The tabulated 5 per cent of the F distribution is 1.83. Hence linear 
25, 34 

(TD, ED) fits significantly better than linear (T, D, E), but log-linear 

(TD, ED) does not fit better than log-linear (T, D, E). This reflects 

the fact that the log-linear additive model (T, D, E) makes better sense 
substantively than the linear additive model (T, D, E). In fact, the 

best linear model (TD, DE) implies that differences in mean parity by 

Education and Type of Place are not equal for all levels of Marital 

Duration, which is precisely the property that linear (T, D, E) does not 

reflect. 

The reader may like to test whether linear (TD, TE, DE) fits significantly 

better than linear (TD, DE) (F6 28 = 1.10) and whether log-linear 
(TD, TE, DE) fits significantly,better than log-linear (T, D, E) 

(F 31 28 = 1.16). In both cases the answer is negative, that is, linear 
(TD,,TE, DE) and log-linear (T, D, E) have the best relative fits. 

* This test corresponds to the F-test in analysis of variance. Strictly 
speaking, the test involves an assumption of simple random sampling of 
individuals which is not valid for the stratified cluster sampling 
employed in WFS surveys. The effect of this assumption is unknown 
and the subject of current statistical research. 
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The fact that the log-linear model with the best relative fit is simpler 
than the best linear model is a strong reason for preferring log-linear 
models for this reponse, in addition to the fact that the response is 
non-negative. In fact, an experienced analyst would probably not fit 
linear models for this response; we make use of them here for illustrative 
purposes. 

4.4.3 Chi-Squared Tests of Absolute Fit for Poisson and Binomial Error Structures 

So far, we have considered the relative fit of different models, that is, 
we have compared the fit of all models with the largest model for which the 
fit can be measured, that is (TD,TE,DE). If this model is wrong, that is 
there are significant three-factor effects, then the F-tests no longer apply 
(although the comparison of mean deviances still has some value). The 
question remains whether absolute measures of fit can be derived. Here there 
lies an important distinction between Normal error and Poisson or Binomial, 
error structures. 

Recall that for Normal error the variance of Y in each cell is assumed a 
known multiple of a constant o2 , which fixes the level of unexplained 
random variation. When a linear model is fitted the mean deviance estimates 
o2 . If the model is wrong, the mean deviance is inflated by significant 
effects v1hich are assumed zero in the model, leading to an overestimate of 
the true variance. For this reason an absolute measure of fit requires an 
independent estimate of o2 . This can be formed from the within-cell sample 
variances if they are available. (See Appendix 1). 

For Poisson and Binomial Error, var (y) is a known function of the mean 
and there is no independent parameter o2 associated with the variance. 
For this reason, the absolute fit for log-linear and logit-linear models 
can be assessed directly via chi-squared test on the deviances. If dem' 

df are the deviance and degrees of freedom for mode 1 (m), then if mode 1 
m 
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(m) is true, dem is approximately* distributed as chi-squared with 
dfm degrees of freedom, that is dem _x2df . Significantly large 
values of chi-squared indicate that the m~del does not fit. For 
example, log-linear (T,D,E) in Table 4 gives a chi-squared value of 
70.65 on 59 degrees of freedom, which is not significant at the 
5 per cent level, thus indicating a satisfactory fit. 

4.4.4 Chi-Squared Tests of Relative Fit for Poisson and Binomial Error Structures 

The chi-squared test also provides an alternative to the F-test for 
comparing nested log-linear or logit~linear models: If (m') is obtained 
from (m) by setting parameters to zero, and the model (m') is true, 
then de ,-de is approximately chi-squared with df ,-df degrees of m m m m 
freedom, that is dem,- dem ~ XJf ,- df Significantly large values 
of chi-squared indicate that (m}mfits ~ignificantly better than (m' ). 

For example, a test for the effect of education on parity, controlling 
for T and D, may be achieved by comparing models (TD) and (TD,E). The 
chi-squared test for these log-linear models gives (from Table 4) 

x2 70.65 - 57.06 = 13.59, 
52-lt9 

significant at the one per cent level. That is, (TD,E) fits significantly 
better than TD, so that an effect of education is established. 

Thus we have two alternative methods for comparing log-linear and 
logit-linear models. The chi-squared test is more powerful than the 
F-test, particularly when df is small, but the F-test remains valid under m 
somewhat weaker assumptions about the error structure**. 

We have described fitting and comparing hierarchical models for three-
way tables; the same procedures can be used to fit tables of four or 
more dimensions. However, the number of hierarchical models increases 
rapidly (there are 166 hierarchical models for 4-way tables). Consequently 
it becomes impractical to fit all models, and the possibility of more than 

* In large samples. Also, simple random sampling is assumed (see previous 
footnote). 

**Namely that ncyc is proportional to a Poisson (Binomial) variate, with 
unknown constant of proportionality. 
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one model giving satisfactory fit is stronger. some literature exists 
on automatic stepwise procedures for selecting models. However, in 
general, it is simpler to use substantive knowledge to limit the 
number of models to be fitted, or to reduce the dimensions of the table 
by disaggregation, as illustrated in Section 6. 

4.5 SUMMARY 

We have constructed a class hierarchical models for the systematic component 
of a generalized linear model. The fitting procedures for these models 
yield indices, the deviance and the mean deviance, for measuring the 
goodness-of-fit. The mean deviances, which correspond to residual mean 
squares for linear models, can be used to obtain F-tests to compare the 
relative fit of models. In addition for log-linear and logit-linear 
models, the deviances provide chi-squared tests of absolute and relative 
fit. 
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5. INTERPRETATION OF ESTIMATED EFFECTS 

We have seen ho\'/ models are formulated in terms of a set of parameters 
or effects, which \'le have denoted by the Greek syrnbo l 1' with suitable 
subscripts. When the models are fitted, estimates of these effects 
are calculated; also, in some computer programs (including GLIM) 
associated standard errors can be obtained. In this section, we 
discuss how to interpret these results. 

5.1 LINEAR MODELS 

The interpretation for a particular effect depends on the choice of 
link function, the systematic component and the set of constraints 
imposed to define the effects uniquely. Consider for example, the best 
linear model for the data of Table 3, that is linear (TD, ED). This has 
systematic component 

mtd
6 

= 1' +"it + 1' + 1' + 1' + 1' for all t,d,6. (5.1) 
2d 36 i2td 23d6 

Suppose, as before, that in order to define the effects uniquely, we set 
to zero all effects involving Rural Type of Place (T=3), Marital Duration 
over 25 years (D=6) or Secondary and Higher Education (E=4), that is, 
effects with the highest value of any subscript. This gives 

A A =A =A =A =A =A = 0 for all t, d and 6, 
13 26 34 12t6 123d 23d4 2366 

Then it is easily established from (5.1) that, in terms of the cell 
means, 

1' = m - m for all t and 6, (5.2) 
lt t6e 36e 

1' = m3d4 - m364 for all d, (5. 3) 
2 

1' 
12td 

(mtd6 - m3d6) - (mt66 - m36e) for all t, d and 6 (5.4) 

1' (mtde - mtd4) - (mt6e - mt64) for all t, d and 6 (5. 5) 
23d6 
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Hence, all the main effects can be identified as differences, and the 
two-factor effects as differences of differences, in the ce 11 means. 
For example from (5.2), >- measures the difference in parity between 

1 
Type of Pl ace t and Rura 1 (T=t and T=3), for women vii th 25 or more 
years of marriage (D=6) and the same level of education (E=e). Note 
that this difference is specific to D=6 and is not assumed the same for 
other values of marital duration; this reflects the fact that the 
mode 1 (TD ,ED) includes the t1~0-factor effects of T and D. Indeed, 
from (5.4) we see that \ d measures the change in this difference 

i2t 
between marriage duration level d, (mtde - m3de) and marital duration 

level 6 (mt 6e - m36e). 

In contrast, consider the model (T,DE) which includes the main effects 
of T, D and E and the two-factor effects of D and E. For this model, 
the systematic component is 

mtde = 1' + \ + \ + \ + \ for all t, d and e, 
it 2d 3e 23de 

and hence: 

"it= mtde - m3de for all t, d and e. 

That is, the effect>- is no longer specific to women married over 25 
it 

years, but represents the difference in mean parity betv1een Type of 
Place t and Rural (T=t and T=3) for all levels of Education and Marital 
Duration, reflecting the absence of interaction effects involving Type of 
Place in the model. This generality and simplicity of interpretation 
is reserved for the main effects of variables v1hich are additive in 
the model, that is which do not appear in two-factor or higher order 
effects in the model. For this reason, we shall limit the discussion 
here to the interpretation of additive variables. The interpretation 
of variables which appear non-additively is probably best achieved by 
considering the fitted means themselves rather than the effects v1hich 
underly them (see Section 6). 

5.2 LOG-LINEAR AND LOGIT-LINEAR ADDITIVE MODELS 

However, we shall not limit ourselves to linear models. The main effects 
of log-linear models clearly measure differences in the log-means, and 
the main effects of logit-linear models measure differences in the 
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logit-means, log (m/(1-m)). For example, the log-linear additive model 
(T,DoE) has systematic component 

log mtd = >. + >. + >. + >. for a 11 t, d and e , 
e lt 2d 3e 

and hence with the restriction >. = 0 we find that 
34 

\e = log mtde - log mtd , 

so that>. measures the difference in the log mean parity between any 
3e 

educational level and secondary and higher (E=e and E=4), for fixed T 

and D. 

As before, we can re-express this as a ratio of means by exponentiating: 

That is, Y measures the ratio of the mean parities beb1een any 
3e 

educational level e and secondary and higher for fixed T and D. This 
parallels the interpretation of estimated effects given in Section 2. 

Example: 

For the log-linear model (T,D,E) fitted to Table 3, the estimated main 
effects of education were as follows (standard errors in brackets): 

A = 0.310 (.055), A = 0.333 (.054), A = 0.208 (.056), A = 0(0), 
31 A 32 33 ~34 

the values for>. being a consequence of the imposed constraint >. = O. 
34 34 

In view of this the other estimates should be interpreted as differences 
in the log-mean parity between category e and category 4, (fore = 1,2 and 3), 
and the standard errors refer to these estimated differences. 

From these values, the differences in log-mean parity between any two 
levels of education can be estimated. For example >. estimates the 

A ~ 31 
difference between categories 1 and 4, and >. - >. estimates the 

31 32 
difference between categories 1 and 2 (since 1 vs. 4 minus 2 vs. 4 equals 

1 vs. 2). 
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The complete set of comparisons are given in the lower triangle of the 
matrix in Table 5a). For example, the entry in row 3, column 2, .125, 
estimates the difference in log mean parity between educational levels 
2 and 3. As previously noted, it is easier to interpret these estimates by 
exponentiating; thus the ratio of mean parities between levels 2 and 3 
is e 0

• 1
25 = 1.13. In other words, lower primary educated women are 

estimated to have 13 per cent more children than upper primary educated 
women with the same levels of Type of Place and Marital Duration. 

In addition, the standard errors for these comparisons, displayed in the 
upper triangle of Table 5a), can be used to calculate statistical tests 
and confidence intervals. In the comparison of levels 2 and 3 for 
example, the difference in log mean parities of 0.125 has standard error 
.030, and is therefore significant at the 5 per cent level. 

A 95 per cent confidence interval* for the difference is given by 

0. 125 .:!::. 2 (. 030) = (. 065' .185) 

This can itself be interpreted by exponentiating to obtain a confidence 
interval for the ratio of mean parities. In this case we obtain 

(e•065, e,185) = (1.07, 1.20) 

In other words, lower primary educated Indian women have on the average 
somewhere between 7 per cent and 20 per cent more children than upper 
primary educated Indians of comparable Marital Duration and the same 
Type of Place. Note that a difference has been uncovered, but the 
magnitude of the difference is not at all well determined, a typical 
finding from this kind of data. 

*These tests and confidence intervals are approximate; appropriate 
standard distributions are the t distribution with degrees of 
freedom as for the fitted model (here df=59), or if the degrees of 
freedom are large, the Normal distribution. No allowance has been 
made for multiple comparisons although this can be done in the usual 
way if desired. 
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lABLE 5 Effects of Education and Type of Place of Residence on 
Log (Mean Parity), based on l og-1 i near additive model e 

a) Education 

Education 2 -.023 

Level 3 . l 02 

4 .310 

b) Type of Place 

Suva 

Suva 

Type of Urban - . 112 

Place Rural - . 151 

Education Level 
2 3 

(.023) ( ,031) 

(,030) 

.125 

.333 .208 

Type of Place 
Urban 

(.032) 

-.039 

4 

( .055) 

(.054) 

(,056) 

Rural 

(.028) 

(.025) 

Key : Lower triangle gives estimates in difference in loge (mean parity) 
between column level j and row level i. Upper triangle gives 
corresponding standard errors. For example, in a) -0.023 is the 
estimated difference in loge (mean parity) between education level 
(no education) and education level 2 (lower primary education), 
and this has standard error .023,Standard errors are based on a 
mean deviance of one. 
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The differentials according to Type of Place are presented in Table 5b). 
These indicate that when Education and Marital Duration are controlled, 
there is no evidence of a difference in mean parity between rural and 
other urban Indians, but the Suvan Indians have significantly fewer 
children than these groups. From the sample the estimated mean parities 
of Suvan Indians were 14 per cent and 11 per cent lower than Rural and 
Other Urban Indians, respectively, but these figures are subject to a 
standard error of 3 per cent and hence the differentials are not well 
determined. 

5. 3 STANDARDIZATION OF THE FITTED MEANS 

An alternative way of presenting the res~lts is to use the technique 
of standardization on the fitted means {mtde} , that is to present the 
fitted means of one factor averaged over a standard distribution of 
the other factors. 

-
For example the standardized mean m for educational level e 

~ e 
is formed 

as weighted average of mtde over the cells of T and D, that is 

me=;~ wtd mtde' (5.6) 

where the wtd are non-negative weights which sum to unity: 

The choice of standard (that is, of weights wtd) is somewhat arbitrary. 
We shall (following Pullum, 1977) use the marginal observed distribution 
of counts, so that 

wtd = ntd+ln+++ , (5.7) 

where "+" denotes summation over the corresponding subscript. This leads 
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to the following standardized means for our example: 

( 1) 

Mean Parity 4.05 
(Sample Size) (895) 

Education (controlling for T and D) 

(2) (3) (4) 
4.14 
(943) 

3.66 
(579) 

2.97 
(271) 

Mean (weighted} 
3.89 (5.8} 
(2688) 

These are interpreted as the expected parities for each education group if 
they had the distribution of T and D given by (5.6) and (5.7). However, 
an important property of the standardized means from this log-linear 
model is that they preserve the ratios between mean parities estimated 
by the model, for any choice of standard distribution. That is, if e 

and e' are two educational levels, then for any choice of v1ei ghts, the 
ratio of the standardized means is 

~ ~ A A 

m 1 m,= y /y, 
e e 3e 3e 

(5.9) 

which does not depend on the choice of weights used in (5.61. 

-
This is easily proved algebraically by substituting mtd = y y y y 

e 1 t 2d 3e 

in (5.6) and (5.9). For example, from (5.8) the ratio of standardized 
means parities for levels 1 and 4 is 

m1/ m4 = 4.05/2.97 = 1.36, 

and this equals the ratio of y (e 0 • 31 = 1.36) toy (e 0 =1) for this 
34 34 

model from the foot of Table 3. Thus the choice of standard distribution 
affects the overall level of the standardized means, but does not affect 
the ratios between pairs of means*. 

In general, this invariance property between ratios holds if the variable 
which is being standardized is additive in the fitted log-linear model. 
Here the variable education is additive in the log-linear model (T,D,E}. 

*This property also reduces the calculation involved, since only one 
standardized mean need be calculated from (5.6), the others being 
derived from (5.9). 
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In these cases we recommend re-expressing the standardized means (5.8) 
in terms of percentage deviations from the overall standardized mean, 
here 3.89. This gives 

Parity: 
Per cent 
deviation 
from Mean 

Education Level (standardized for T and D) 

(1) (2) (3) (4) Mean 

+4 +6 -6 -24 3.89 {5.10) 

The advantage of this form of presentation is that the percentage deviations 
do not depend on the choice of standard {although the overall mean does). 

This way of presenting effects does not readily allow the inclusion of 
standard errors, as in Table 5, and hence it is less detailed than that 
table. However, it has the advantage of being easier to comprehend and 
it allows direct comparison with unstandardized results. For example, 
the unstandardized means for education (in the beginning of section 2) 
can be written in the same way: 

Educational Level 
(1) (2) (3) (4) Mean 

Parity: 
Per cent 
deviation +30 +5 -30 -62 4.0 
from Mean (2688) 

By comparison with (5. 10), we see that deviations between educational levels 
are considerably reduced when Type of Place and Marital Duration are 
controlled. 

The results from linear additive models can also be presented by 
standardizing the fitted values. However, in that case the raw differences 

between the standardized means give the estimated effects from the model 
and are the same for any choice of standard. Consequently, the results 
are best expressed as raw deviations from the overall standardized mean. 
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5.4 WHY FIT A MODEL? 

The introduction of standardization as a method of presenting results 
suggests an intriguing thought. Since the fitted values from a good 
model should be close to the original means {Y }, a similar result should 

c 
be achieved by simply standardizing the sample means, without fitting a 
model at all. Hence why fit models? 

The answer lies in the following difficulties associated with direct 
standardization of the observed table. 

(1) A procedure is necessary to deal with cells with no observations. 
These can be avoided by combining or omitting levels of a factor; 
alternatively, estimates of missing cell means must be substituted. 
The best estimates are, naturally enough, the fitted values from 
a suitable model, although simpler fitted values may be satisfactory. 

(2) Standardization of the observed means is statistically inefficient, 
in that estimates of differences have a larger variance than 
corresponding estimates from the fitted means from the correct 
model. For example, cells with small numbers of observations 
are often given too much weight when the observed means are 
standardized. Also, standard errors of estimated differences are 
not provided. 

(3) Perhaps most importantly, the model-fitting process indicates when 
standardization is appropriate for summarizing comparisons, and 
on what scale the comparison should be made (raw differences for 
linear additive models, log-differences or ratios for log-linear 
additive models). If models are not fitted then this can only 
be decided by a subjective assessment of the data (See Pullum, 1977). 

Standardization of the observed means remains a useful method, 
particularly when the apparatus of model-fitting is not available. 
However, even when the superior methods are not used, the theory of 
additive models provides valuable insight into the uses and limitations 
of standardization as a technique. 
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5.5 SUMMARY 

The presentation and interpretation of effects from additive models 
and associated standard errors has been illustrated using the log-linear 
(T,D,E) model for data on mean parity. The presentation led to a 
discussion of standardization as a method of summarizing comparisons. 

6, LOGIT LINEAR MODELS FOR PROPORTIONS 

A large amount of the information from fertility surveys can be 
represented by cross-classifying the proportion y of the sample n with 
a particular attribute; for examp 1 e, the proportion who ever used or 
are currently using contraception, the proportion currently married, 
or the proportion who want no more children. \~e have noted that 1 ogit-
1 inear models with Binomial error are often appropriate for analysing 
these data. In this section, we illustrate this with applications to 
data on contraceptive use. 

6.1 THE DATA 

We shall analyse the data given in Table 2, where the proportion who 
ever used contraception and the proportion currently using contracept1on 
are classified by Race (R), Current Age (A), Desire for More Children {r-1) 

and Education (E). The levels of these factors are described in the 

beginning of Section l; note, in particular, that in this example 
education is grouped into not four but two levels; Lower Primary 
and below (E=l} and Upper Primary and above (E=2). 

It would be possible to fit models to these two four-way tables with 
factors R, A, wand E, but to reduce the number of models we have 
analysed the results for Fijians (R=l) and Indians (R=2) separately, 
giving four three-way tables with factors A, Fl and E. 
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6.2 MODEL SELECTION 

The hierarchical models for these tables are listed in the first column 
of Tab 1 e 6, with associated degrees of freedom in the second co 1 umn. 
The deviances from fitting these logit-linear hierarchical ·models to 
the four tables appear in the next four co 1 umns, with b 1 an ks v1hen a 
mode 1 was omitted. As noted in section 4, these deviances can be 
interpreted as chi-squared values. 

Consider the column for Ever Use among Indians. In absolute terms, 
seven models give a satisfactory fit in the sense of a corresponding 
chi-squared value which is not significant at the 5 per cent level: 
the additive model (A,E,W) and six models involving two factor effects, 
viz. (Ar.;)' (A ,Erl)' (E ,Ml)' (Ar·l ,EW)' (AE ,Ari) and (AE ,Ml ,Ev/). To choose 
between these we also consider their relative fit. Consider, for example, 
the two models (A,Erl) and (Ar-1,Evl), which are nested since the former is 
obtained from the 1 atter by setting the two-factor effects of A and rv 
equal to zero. The inclusion of the Ml effect in the model (A,Evl) results 
in a reduction in the deviance of 8.9 (from 10.7 to 1.8) for the addition 
of 3 degrees of freedom (from 6 to 9). Since 8.9 is greater than the 
95 per cent point of a chi-squared deviate on three degrees of freedom 
(viz. 7.8) we conclude that this is a significant reduction and therefore 
model (Arv,EW) fits better than (A ,Ev!). Further comparisons with other 
models lead to the conclusion that (AW,EW} is the best model. The best 
model for each response and race are indicated by asterisks in Table 6. 

6.3 HYPOTHESIS TESTING 

As before, the deviances in Table 6 help us to test general hypotheses 
about effects. For example, consider the hypothesis that education is 
not related to current use of contraception after the effects of age 
and desire for more children have been controlled. (Controlling the 
latter variable means that the question is directed towards differentials 
in the link between desire and contraceptive practice rather than 
differentials in desire itself). If this hypothesis is true then the 
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TABLE 6 Deviances from fitting hierarchical logit-linear models to data 
in Table 2 

FIJIANS INDIANS 

Model df Ever Use Current Use Ever Use Current Use 

15 215.4 166 208 336 

A 12 138 196 

E 11 207 330 

T·I 14 80.6 74. l 47.0 84.4 

A,E 11 136 195 

E,W 13 41.9 82.2 

A,W 11 25.4 36.9 20.0 67.8 

A,E, Fl 10 19.3 29.9 15. 4 64.5 

AE 8 135 16.7 

Erv 12 39.4 65.7 

AI'/ 8 21.5 20. l 8.92 16.7 

A,Evl 9 18. 9 23.0 10.7 45.8 
E,AW 7 15.5 12.6 4.41 13.6 

Fl,AE 7 9.5* 23.2 14.3 61. 2 
ATv,EW 6 15. 5 lCl. 8 1.83* 4.60* 
AE,EW 6 8.6 13.8 9.70 45. l 
AE,AF! 4 5.3 5.80 3.53 11.6 

AE!ATv,ETv 3 5.2 2.44* l.04 3.89 

A = age, E = education, w = desire for more children. 

df = degrees of freedom corresponding to the model 

* best model. 
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model (Ari) v1hich includes no effects of education should fit the data. 
Since the model (Ml,EFI) v1hich includes education effects fits the data 
better than (Ml) for both Fijians and Indians, the hypothesis is rejected 
for both Fijians and Indians, that is education does indeed appear to 
be related to Contraceptive Use, after controlling for A and fol. However, 
the presence of the EFI interaction in the best models indicates that the 
effect of education does not appear to be additive; that is, the nature 
of the effects depends whether or not women desire more children. 

6.4 INSPECTION OF THE FITTED VALUES: LOGIT PLOTS 

We noted in the previous section that non-additive effects such as this 
are best understood by reference to the fitted values from the model. 
In Figure 1 we have plotted the logits of the observed proportions 
against age for each combination of educational level and desire for 
more children. For clarity we have labelled these groups HY, HN, LY 

and LN where H stands for High Education (E=2), L stands for Low Education 
(E=l), Y stands for Desires More Children (rf=l) and N stands for Desires 
No More Children (ri=2). In Figure 2 vie have plotted in the same way the 
logits of the fitted proportions based on the best model in each case. 

Comparispn of these plots shows the effect of fitting the models. The 
similarity in the positions of the corresponding observed and fitted 
logits reflects the fact that the models fit the data well; the parallel 
lines in the fitted logits reflect certain kinds of additivity in the 
models. For example, the model (AFl,Evl} for current use, Indians display 
a form of additivity because the AE interaction is missing, viz., within 
each level of W the effects of A and E are additive. This is reflected 

in the graph by t1~0 pairs of parallel lines for W=l (Yes) and fv=2 (No). 
The displacement between the lines in each pair represents the effect of 
education at the corresponding level of w. 
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It is clear from the graph that the effect of education on current use 
for In di ans is greater for 1•1omen v1ho desire more chi 1 dren than for 
women who do not desire more children (the same remark applies for Ever 
Use). Hence for Indian women, the impact of education seems to have 
increased contraceptive use among women v1ho are delaying a desired 
future child, (spacers) more than among women who do not want another 
child. 

For Fijian women the (EA) interaction is included in the model, so that 
the effect of education on current use also depends on the age group 
of the respondents. The graph of fitted logits indicates that again the 
impact of education is mainly on women who desire more children, but 
that the impact .is significantly higher for women in the fourth age group, 
that is, for women over 40 years old. In this age group a differential 
according to education emerges for the women who do not desire another 
child, that is, more educated women have a higher incidence of current use. 
Ho1vever, this differenti a 1 is s til 1 less marked than for the group 1vho 
do want another child. 

For both Fijians and Indians the effect of Desire for More Children 
on Current Use depends on both Educational Level and Age. The prevalence 
of Current Use among women who want no more children increases sharply 
with age. Also, for Indians, current use is highest in the 30-39 group 
for those v1ho want no more chi 1 dren, and in the 25-29 group for those 
who want more children. 

The magnitude of these effects can be estimated from the fitted values 
if required. For example, the difference in current use between High 
and Low education groups who want more chi 1 dren is about half on the 
logit scale, which corresponds to a difference of a half in the log-odds. 

l 
Hence since e 2 = 1.65, this corresponds to a 65 per cent increase in the 
odds in favour of current use. Once again a calculation of the standard 
error (not attempted here) would indicate that this increase is not 
we 11 determined. 
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FIGURE 1, Contraceptive Use Data in.Table 2. Plots of logit p against Age 
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_F_IG_U_R_E_2_: _C_o_nt_r_a_c~ep~t~ive Use Data in Table 2. Plots of fitted logits against Age 

logity-~ :r · logit p 
,9: 

2· 

1 

0 

-1 

-2 

--1 

t 

I 

--
""-.. __ 

3 4 

INDIANS: CURRENT USE 
.Model: (Ail, Erl) 

1 2 3 

INDIANS: EVER USE 
Mode 1 : (Af/, Ef/) 

', 4 
' LY 

L 
Hl 

.8 

.6 

Age Group 
,4 

.2 

Age Group 

.4 

2. 

0 

-1 

-2 

logit p 

2 

0 

-1 

HN 

p 
.Y' 

.8 

.6 

FIJIANS: CURRENT USE 
. Model: (AE, Aff, Efl) 

HN 

LN 

1 f / 2 3 
HY 1 

LY 1 

I , , , 
I , 

FIJIANS: EVER USE 
Model: (fl, AE) 

R 
.9 

HY· .!l 

/ 'LN 

.6 

Notes: Groups as for Figure 1. 
Table 6. 

Fitted values are from best logit-linear models, as in 

53 



The interpretation of the models for Ever Use are left to the reader; 
in a sense they are of limited substantive interest since the 
relationship bet~1een the historical measure of contraceptive use 
(Ever Use) and the current measure of attitude to~1ards child-bearing 
{rv) is rather obscure. 

6.5 SUMMARY 

We have illustrated the use of logit-linear models for cross-classified 
proportions on data on contraceptive use. The best fitting model is 
selected by methods similar to those described in Section 4. Here 
however, non-additive models are required, and these models are 
interpreted from plots of the fitted values. 
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APPENDIX I 

ADDITIONAL ANALYSIS BASED ON WITHIN-CELL SAMPLE VARIANCES 

In section 1, we emphasized the need to collect the sample variances 
{s 2 } for each cell e of the tab 1 e. In this appendix, we indicate how 

c 
these data can be used to help determine the error structure of the model. 

For a dichotomous response, leading to cross-classifications of 
proportions, the sample variance is completely determined by the sample 
proportion. (If the sample proportion is y and simple random sampling 

is assumed then the sample variance is y(lly)n ). Consequently, we shall 
n-

not consider these tables or the Binomial error structure associated with 
them. 

For models considered in this paper we are left with two possible error 
structures, the Normal e.r.d the Poisson. For simplicity, let us assume a 
Normal error structure for linear models and a Poisson error structure 
for log-linear models. The sample variance can be used (a) to determine 
the multipliers k in the normal error variance, if linear models are 

e 
fitted, or (b) to check the Poisson error assumption, if log-linear 
models are fitted. We shall illustrate both cases using the within-cell 
variances for the data in Table 3, given in Table Al. In that case, the 
log-linear models were clearly more appropriate than the linear models, 
but the data also provide a good illustration of procedures when (a) 
applies. 

NORMAL ERROR 

Recall that the normal error structure assumes that the variance of the 
mean y for a typical cell e is given by 

e 
- 2 var (Ye) =0 .kd'!Je 

and the corresponding within-cell variance by var (Y) = 0 2 k . Since sc2 , c c 
the sample variance for cell e, estimates var (Ye), and obvious procedure 
would be to set k = s 2 and 0 2 = 1. However, in general this is not 

c e 
recommended, since the sample variances are not determined for cells with 
less than two observations, and are themselves subject to considerable 

56 



sampling variation for celT~ with small ~ample sizes. A logical 
procedure ~/Ould be to smooth these estimates by fitting a model to the 
within-cell variances, but this is perhaps a little elaborate for this 
secondary type of analysis. 

A simple suggestion is to calculate averages of the within-cell 
variances for each level of a factor and then to look for obvious 
relationships. In our example, the variance is clearly related to 
marital duration. The mean sample variances (calculated as weighted 
means with weights for cell a proportional to na - 1) for different 
levels of D are shown in the last column of Table Al, and show a 
clear increase in the variance as marital duration increases. 

The error structure for the fitted Linear Models in Table 4 assumed 

var Ytde = dcr 2 for all t, d and e (Al. 2) 

If dcr 2 , the variance for row d, is estimated as the weighted average 
of the within-cell variances for that row, then the following estimates 
of cr 2 are obtained: 

Marital Duration 

2 3 4 5 6 mean 

Estimated cr 2 0.77 0.70 0.98 0.92 1.25 1.79 1.07 (Al.3) 

There is some evidence that these variances still increase with v, that 
is that the assumption (Al.2) underestimates the rate of increase of the 
variance with marital duration. However, (Al.2) clearly improves on 
the assumption of homoscedasticity (that is, equal within-cell variances). 

If (Al.2) is accepted and the variances in (Al.3) are taken as estimates of 
cr 2 then they can be compared directly with estimates of cr 2 derived from 
the unsaturated models, that is, the mean deviances. From Table 4, the 
mean deviance for the largest unsaturated linear model (TD,TE,DE) is 
1.42, which is higher than the variances in (Al.3), except for the value 
for D=6. This suggests that the mean deviance from this model overestimates 
the within-cell variance, which implies that the assumption that the 
3-factor effects of T x D x E are zero is questionable. Hence, inspection 
of the within-cell varances leads to the suspicion that none of the 
unsaturated linear models are entirely satisfactory for these data, and 
adds to the evidence in favour of another choice of link function. 
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POISSON ERROR 

For the Normal Error distribution we suggested plots of the sample 
variances against the factors. A basic property of the Poisson 
distribution, that the variance of Y is equal to the mean, indicates 
a plot of the sample variances against the sample means. 

We suggest plotting the log sample variances against the log sample 
means, for the following reason. A useful form for the relationship 
between me' the expected parity of an individual in cell e, and the 
within-cell variance is 

var Y = km a , 
e e 

where k and a are constants. The special case k=l, a=l corresponds to 
the Poisson variance; a=O corresponds to the assumption of homo­
cedasticity. Taking logarithms gives 

log var Ye = log k + a log me 

Thus in a plot of log variances against log means, the Poisson error 
variance corresponds to a straight line through the origin (k=l, log k=O) 
with slope 1. 

In Figure Al, the loge (variances) are plotted against the log (means) 
for the data in Table 3; the straight line corresponds to the Poisson 
variance. It appears that the variances are less than Poisson for low 
mean parities, and more than Poisson for high mean parities, an 
intuitively reasonable result. The Poisson error assumption seems 
acceptable as an overall approximation. 

In certain situations this plot may reveal that the variance is 
proportional to the mean (a=l), but with a constant of proportionality 
k not equal to one. Then k can be estimated as the ~1eighted average of 
s 2 /m e e' 

k = E (n -l)s 2 /m /E (n -1) 
e e e e 

ce 11 s , e ce 11 s , e 

where cells with a small value of n (say n < 20) are excluded from the 
e e 
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TABLE Al 

Indians: Within Cell Variances for data in Table 3 

TYPE OF PLACE 

Years SUVA URBAN RURAL Mean a) 

Since Education Education Education 
First 2 3 4 2 3 4 2 3 4 
Marriage 

<5 l.14 .73 .67 .48 l.06 l.59 .73 .54 .88 • 81 .80 .59 .77 

5 - 9 l. 66 .99 l.87 .68 3.44 l. 51 .97 . 81 1.93 l.36 l .30 l.19 l.41 
U1 
\.0 l 0 - 14 l. 72 2.31 l.57 l.82 2.97 2.99 l.96 l.52 3.52 3.31 3.28 2.50 2.94 

15 - 19 2.03 l.46 . 81 .92 7.40 2.97 3.83 .70 4.91 3.23 3.29 3.69 

20 - 24 4.15 4.64 4.08 4.30 7 .19 4.44 4.33 .33 8.20 5.72 5.20 .50 6.26 

25+ 12.46 11.66 4.27 11.45 l 0.53 12.60 11.34 7.57 7.07 lo. 75 

a) Weighted mean with cell c given weight n - l, where n is the sample size. 
c c 

Blanks denote sample sizes of zero or one, for which sample variances cannot be calculated. 



FIGURE Al: Plot of loge (cell means) vs loge (cell variances) for data in Table 3 
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calculation. The deviances from log-linear models should then be 
adjusted by dividing by k before comparing them as chi-squared 
deviates, and standard errors from the models should be multiplied 
by the factor I k . 

SUMt•1ARY 

The within-cell sample variances should be used to check the error 

structure of linear and log-linear models. For linear models, these 
quantities can be used to estimate the underlying variance cr 2and the 
factors k which characterize departures from homoscedasti city. For 

c 
log-linear models, the Poisson Error assumption can be examined by 
plots of the log sample means against the log sample variances. 
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APPENDIX II 

COMPUTING NOTES 

Methods of analysis presented here are based on maximum likelihood 
estimation for the general linear model. The theory is described 
in Nelder and Wedderburn (1972}, and the practice is facilitated by 
the computer package GLII~*. Before presenting material on GLIM 
(Appendix III} we shall discuss comparable systems of analysis 
available in common statistical computing packages, such as SPSS 
and BMD. This note is based partly on the paper by Francis and 
Wi 11 i ams ( 19 76). 

The traditional method of analysis of cross-classified data is analysis 
of variance, where each effect (main, two-factor or higher order) is 
assigned a sum of squares which represents its contribution to the 
explained variance of the response. See, for example SPSS subprogram 
ANOVA and BMD program P2V. For balanced data (that is, equal-cell 
sample sizes) the effects are orthogonal, which means that the 
decomposition of the sum of squares is essentially unique; for 
unbalanced data this uniqueness is lost, because the sum of the squares 
for a particular effect depends on whether other factors are included, 
or excluded, from the model. 

The underlying models for analysis of variance are hierarchical linear 
models with normal error and constant within-cell variance (that is, 
k = 1 in the notation of section 3), and the sums of squares produced 

c 
by analysis of variance are simply differences of deviances from those 
models. Hence, analysis of variance provides the same kind of 
information as that provided by deviances, that is, it allows the 
analyst to compare the fit of hierarchical models and hence to assess 
the overall effect of factors, but it does not provide fitted values 
and parameter estimates for the analysis of individual effects as 
discussed in sections 5 and 6. 

* References for the computer packages mentioned here appear at the 
end of the appendix. 
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To illustrate the connection between the sums of squares of analysis 
of variance and deviances from normal linear models, consider the 
two-way table ~1ith hierarchical models (~), (A), (B), (A, B), and 

(AB). If SS~, SSA, SSE, SSA, Band SSAB are the corresponding 
deviances, then the analysis of variance sums of squares are constructed 
as follows: 

Source Sum of squares 

(1) main effect of A SSA - SS~ 

(2) main effect of B SSE - SS~ 

(3) main effect of A, adjusted for B SSA, B - SSE 

(4) main effect of B, adjusted for A ssA,B - SSA 

(5) two factor effect of A X B SSAB - ssA,B 

(6) total SSAB - SS~ 

The two factor effect of A x B (also called the two-way interaction) 
is calculated adjusting for the main effects of A and B ; the sum of 
squares for the main effects depend on whether the other effect is 
controlled (lines (3) and (4)) or not controlled (lines (1) and (2)). 
For balanced data line (1) = line (3) and line (2) =line (4), but 
this is not the case for unequal cell sample sizes. In the analysis 
of variance programs, the output is controlled by options chosen by 
the user. Thus one option might give lines (3) - (6), another option 
lines ( 1), ( 4), ( 5) and ( 6) and a further op ti on lines ( 2), ( 3), ( 5) 
and (6). 

A special case of analysis of variance is Multiple Classification 
Analysis (MCA), which assumes an additive linear model. The computations 
are equivalent to an analysis of variance, but programs also provide 
estimated of effects in the form of deviations from the mean, and related 
statistics. 

Logit-linear models for proportions are equivalent to certain log-linear 
models for contingency tables, as discussed in section 3. These can be 
fitted using various contingency table programs (for example, BMDP3F*, 

*Available in the 1977 version of BMDP. 
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ECTA, C-TAB and CONTAB) which use margin fitting algorithms. They 
can fit any hierarchical logit-linear model and provide deviances, 
fitted values and estimates of effects. They do not provide standard 
errors* of effects, but have the advantage of requiring less computer 
space than GLIM and hence they can be more economical to run and place 
less restrictions on the maximum dimensions of the table. 

The computer package GLIM treats a particular class of non-linear 
regression models and computes parameters by an iteratively reweighted 
least squares algorithm. An alternative procedure is to use a general 
non-linear least squares program, such as BMDP3R. Another system 
which uses the same computational algorithm is GENCAT. These are 
powerful programs but they require considerable statistical expertise 
to apply them to the models considered here. In particular, a knowledge 
of maximum likelihood estimation and of the regression formulation of 
analysis of variance models is necessary. Interested readers are 
referred to the documentation of these programs, and to Appendix Cl3 
of the 1977 BMDP manual. 

The author feels that the class of models fitted by GLIM are sufficiently 
general for most data encountered in \forl d Fertility Surveys, and the 
package is particularly simple to use. An example of the output it 
produces is given in Appendix III. 

*However, BMDP3F calculates standard errors for certain models, and 
failing this gives upper bounds. 
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REFERENCES TO STATISTICAL PACKAGES 

GLIM (A Fortran Program using Iterative Weighted Least Squares) 
Distributed by Numerical Algorithms Group,13 Banbury Road, 
Oxford OX2 6NN, U.K. (Can be used as both a batch and an interactive 
program). 

BMDP: Biomedical Programs. P. Series. W.J. Dixon, editor. 
University of California Press, Berkeley, U.S.A., 1977. 

SPSS Manual, 2nd Edition; Norman H. Nie, C. Hadlai Hull, Jean G. 
Jenkins, Karen Steinbrenner and Dale H. Brent. McGraw Hill, New York, 
U.S.A., 1975. 

ECTA (Everyman's Contingency Table Analysis : Param~ter Estimates 
and Tests). For information, write to Leo A. Goodman, Department 
of Statistics, University of Chicago, Illinois, 60637, U.S.A. 

C-TAB Distributed by International Educational Services, P.O. Box A3650, 
Chicago, Illinois, 60690, U.S.A., (available for IBM and CDC machines). 

CONTAB (Zahn, DA). For information contact Department of Statistics 
and Statistical Consulting Center. Florida State University, 
Tallahassee, Florida 32306, U.S.A. 

GENCAT. For details see Biostatistics Technical Report No. 8, 
Department of Biostatistics, University of Michigan, Ann Arbor, 
Mi. 48109, U.S.A. 

Reference 

Francis, I. and Williams, K. (1976). A look at Programs for the Analysis 
of Multiway Tables. American Statistical Association, Proceedings of the 
Statistical Computing Section. 
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APPENDIX III 

AN EXAMPLE OF OUTPUT FROM GLIM 

An example of the output obtained from a typical GLIM run is appended. 
The system is designed to run interactively {although it can also be 
run in batch mode) ; once the elements of the system have been learnt 
it is very easy to use. 

Although no attempt is made to explain the system (the interested reader 
is referred to the GLIM manual), we include some comments to clarify 
the output. Words beginning with a $ sign are GLIM commands. Lines 
starting with $C are comments. The commands $DATA, $READ, $FACTor and 
$CALCulate are used to define the data and the factors, $TERms creates 
the space for the largest model to be fitted, $YVA specifies the response, 
$ERRor, $WEight and $FIT specify the model to be fitted, and $DISPlay 
controls the output. 

The example fits the log-linear additive model (T, D, E) to the data 
in Table 3. 
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/GET,TAPE1=1ND 
/-GLIM 

GLIM RELEASE 2A 
*************** 

GENERAL LINEAR INTERACTIVE MODELLING 

? $C 
? $C FIRST THE DATA IN TABLE 3 IS READ FROM TAPE 1. 
? $C 72 OBSERVATIONS ON P:MEAN PARITY,N=SAMPLE SIZE. 
? $C 
? $!NP 1 $ 

? $C 
? $C THE FUNCTION <GL(A,B)>GENERATES LEVELS FOR A FACTOR BY 
? $C ASSIGNING TO IT THE INTEGERS 1 TO A IN BLOCKS OF B. 
? $C 
? $FACT T 3 D 6 E 4 
? $CALC T=<GL(3,4) & D=<GL(6,12) ~ E=<GL(4,1) 
? $C 
? $C NOW CREATE SPACE FOR LARGEST.MODEL AND SPECIFY DEPENDENT 
? $C VARIABLE : P. 
? $C 
? $TER~S T*D 1 D*ErT*ErP $YVA P $ 
? $C 
? $C SPECIFY POISSON ERROR DISTRIRUTION (Pl.THIS GIVES 
? $C LOG-LINEAR MODELS BY DEFAULT. 
? $C 
? $ERR P Si 
'f $C 
? SC SPECIFY ~EIGHTS PROPORTIONAL TO N, THE CELL SAMPLE SIZE. 
? $C 
? $WEIGHT N $ 
? $C 
? $C FIT THE NULL MODEL. GLIM RETURNS THE DEVIANCE AND DEGREES 
? $C OF FREEDOM.(CF TABLE 4) 
? :liC 
? :liF IT $ 

69 OF 
DEVIANCE CYCLE 

3732. 4 
? $C 
? $C FIT CTD,TE,DE) AND (T,D,E) 
? $C 
? $C FIT T*D 1 T*ErD*E $ 

28 OF 
DEVIANCE CYCLE 

30.95 4 
? $FIT T,O,E $ 

59 DF 
DEVIANCE CYCLE 

70.65 4 



? SC 
? $C FROM THESE AND OTHER MODELS,THE ADDITIVE MODEL (T,D,E) FITS 
i SC BEST. HENCE PRINT OUT PARAMETER ESTIMATES,F!TTED VALUES AND 
? SC STANDARD ERRORS OF DIFFERENCES OF PARAMETER ESTIMATES FOR 
? SC TH.IS MODEL 
? SC 
? SDISP E R S $ 

ERROR POISSON LINK LOG 
Y-VARIATE P 

ESTIMATE S.E. PARAMETER 
1 1.701E+OO 5.tl1E-02 GM. 
2 ·1.512E•01 2.BBE-02 T 1 
3 •3.896E·02 2.LlbE-02 T 2 
LI ·1.977E+OO 5.00E•02 D 1 
5 ·9.791E•Ol 3.51E-02 D 2 
b -&.Ob3E•01 3.09E-02 D 3 
7 ·3.b2bE•Ol 2.93E-02 D 4 
8 ·1.913E•Ol 2.90E·02 D 5 
9 3.09bE•01 5.52E-02 E 1 

10 3.327E•Ol 5.39E-02 E 2 
11 2.079E•Ol 5.61E-02 E 3 
S.E.S ASSUME MEAN DEVIANCE OF 1 

UNIT OBS FITTED RESIDUAL WEIGHT 
1 1 .89 -1.17 7.11E+OO 
2 1 .91 1.10 1.91E+01 
3 1 .80 .70 3.37E+01 
4 1 .65 .69 3.33E+01 
5 1 .99 • 61 1.19E+01 

70 8 7.bLI .Ll6 4.51E+02 
71 6 6.75 -1.15 6.75E+01 
72 0 5.LIB o.oo o. 

S.E. OF DIFFERENCES 
1 o. 
2 7.056E•02 
3 6.837E•O? 
LI 8.895E•02 
5 7.757E•02 
6 7.LI02E•02 
7 7.130E·02 
8 7.115E•02 
9 1.llSE .. 01 

X.3LIE·02 o. 

o. 
3.2Ll9E•02 
5.632E•02 
Ll.363E-02 
Ll.039E•02 
3.983E•02 
3.9b2E•02 
S,;78LIE-02 

o. 
5.431E -02 O. 
4.142E-02 5.275E-02 
3.819E-02 5.108E•02 
3.756E-02 5.121E•02 
3.680E•02 5.122E-02 
5.688E•02 6.377E•02 

[Cf. Table 5] 

LIN.PRED 
·1.17E-01 
-9.Ll32•02 
•2.19E•01 
·4.27E•01 
-5.08E•03 [Cf. Table 3] 

2.03E+OO 
1.91E+OO 
1.70E+OO 

[Cf. Table 5] 

o. 
o. 
3.719E•02 
3.6q8E•02 
3.704E•02 
5.838E-02 

3.336E•02 O. 
3.3LIOE•02 3.234E•02 O. 
5.836E•02 b.025E•02 

10 1.092E•01 5.7&5E-02 5.705E-02 6.495E-02 5.982E·02 5.971E·02 6.073E•02 
X.XX4E•02 2.266E•02 O. 
11 1.089E•01 6.0LILIE•02 5.986E·02 6.970E•02 6.400E•02 &.267E·02 6.317E•02 
X.XX3E•02 3.099E•02 3.000E-02 O. 

1 2 3 
8 9 10 11 

S.!.S ASSUME MEAN DEVIANCE OF 

? $STOP 
EXIT 
/BYE 

4 5 6 7 
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